Legyen szó akár nyomáshatárolókról, akár biztonsági, lefúvató szelepekről, vagy egyéb szabályzókról, a méretezés és kiválasztás fontos eleme az úgynevezett átfolyási tényező ismerete. Bár nap mint nap találkozunk vele és használjuk számításainkhoz, a hátteréről általában annyit tudunk, hogy “az áramlási viszonyokból következik”, vagy a “geometria határozza meg”. Ezek az állítások valóban igazak, de ebben az írásban ennél kicsit bővebben szeretnénk betekintést nyújtani a tényezőt befolyásoló tényezőkbe. 

Szelep CFD szimulációja
A kép forrása: https://www.simscale.com/docs/simwiki/cfd-computational-fluid-dynamics/valve-flow-coefficient/

Az átfolyási tényező definíciója

Az IEC-60534-1:2023-as szabvány foglalkozik a leírásával, mérésével, számításával. Rögtön az első kérdést a megnevezése jelenti: angol nyelvterületen általában Cv, míg a német nyelvű ipari környezetben a Kv megjelölést használják, ráadásul ezen értékek egy adott szelepre és áramlásra nem is egyeznek meg. A magyarázat láthatóvá válik, ha megnézzük, hogyan definiálja őket a szabvány:

A Cv azt mutatja meg, hány, 40 és 100 °F közötti hőmérsékletű U.S. gallon víz folyik át a szelepen egy perc alatt, egy psi nyomáskülönbség hatására. A Kv érték nem más, mint ugyanez a mennyiség SI mértékegységekben (tehát m3/h, Pa és K)  kifejezve, a váltószám közöttük: Kv = 8,65*10-1 *Cv. A szabvány használja még az Av jelölést is, ez határozható meg a legközvetlenebbül méréssel. 

Már ebből a leírásából is látszik, hogy a közismert magyarázaton, tehát a szelep geometriáján és az áramlás milyenségén kívül a szabályozni kívánt közeg is befolyásolja a tényező értékét, hiszen az egyfajta “víz-egyenértéket” jelent, mely logikusan más lesz egy könnyű gáz, például hidrogén, vagy egy nehéz folyadék, például nyersolaj esetében. 

És valóban, ha nem a szabványban meghatározott vízre akarjuk tudni a Cv értékét, a következő képletet kell használnunk:

Képlet az átömlési tényező átszámolásáshoz más anyagra

Az átfolyási tényező számítása:

Egy szelep Cv (vagy Kv) értékének meghatározása elágazásokat tartalmazó, iteratív számítást igényel. A szabvány folyamatábrákkal és példaszámítással igyekszik segítséget nyújtani benne, ezekben azonban számos tapasztalati konstans is szerepet kap. Alább azokat a fő tényezőket vesszük sorra, melyek hatással vannak a szelep kapacitására.

A szabályzó geometriája

Az általunk méretezni kívánt szabályzó méretén kívül a típusára is szükségünk van a számítás megkezdéséhez. Milyen alakú a zárótest? Milyen az áramlás jellege? Nyitott térbe távozik a közeg, esetleg csőbe? Hány port található a szelepen? 

Ezeket a hatásokat a vonatkozó szabvány az úgynevezett “liquid pressure recovery factor” és “valve style modifier” konstansokban igyekszik összefoglalni és számításba venni, illetve függelékekben és táblázatokban ad tapasztalati konstansokat a meghatározásukhoz. 

A teljesség igénye nélkül, íme néhány jellemző, ami a szelep kialakításától függ, és korrigálni kell vele az úgynevezett “valve style modifier”-t:

  • Az áramlás legszűkebb keresztmetszete
  • Az ülék átmérője
  • A független áramlási utak száma
  • Az áramlás egyenértékű kör keresztmetszete
  • A nedvesített hossz, az áramlás jellemző mérete
  • A megközelítési faktor sebessége (“velocity of approach factor”)
  • A kilépési veszteségi tényező

Látható tehát, hogy ezen a konstanson belül is több olyan mennyiséget kell használni, melyek egzakt módon nem számíthatóak ki, csak méréssel, vagy pontos CFD szimulációval lehet meghatározni az értéküket.

Ráadásul ha a cső és a szabályzóelem átmérője nem egyezik meg, további számítások, illetve iteráció szükséges ennek figyelembevételére. 

Az áramlás jellege

Az átömlési tényezőt döntően befolyásolja, hogy milyen áramlás alakul ki a szabályzóban a megadott körülmények mellett. Két fő tulajdonságot kell figyelembe venni: fojtott-e az áramlás (az ipari gyakorlatban ezt a méretezés során igyekeznek elkerülni, de természetesen adódhat olyan alkalmazás, mikor erre nincs lehetőség), illetve turbulens-e az áramlás.

Attól függően, hogy fojtott áramlással van-e dolgunk (és ha ebben az esetben nem akarunk azonnal új szabályzó után nézni), más képlettel határozható meg a Reynolds-szám, mely az áramlás dimenziótlan leírására szolgál. A szabvány a 10 000-es Re feletti áramlást tekinti turbulensnek. Azt, hogy ebből a szempontból mi jellemzi az áramlásunkat, egy kritikus nyomásviszony kiszámításával határozhatjuk meg. Ha az általunk előírt nyomáskülönbség ezt eléri, az áramlás jó eséllyel fojtott.

Amennyiben az áramlás átmeneti, vagy lamináris, az átfolyási tényező meghatározásához iterációra lesz szükség, azaz választani kell egy tetszőleges értéket, elvégezni vele a számítást, és a kapott eredményből egy másik képlettel visszaszámolni a Re számot, majd a Cv-t. Ha az első lépésben választott érték, és a visszaellenőrzés egy bizonyos határon belül van (a szabvány pontosan definiálja), akkor a számolás kész, ha nem, akkor az iterációt egy 30%-kal megemelt értékkel újra el kell végezni.

Anyagjellemzők szerepe az átömlési tényező számításában

Azon felül, hogy a már ismert értéket át kell számolnunk más anyagra, hacsak nem éppen a szabványban megadott minőségű vízzel dolgozunk, a közeg számos tulajdonsága megjelenik a számítás során:

  • Moláris tömeg
  • Fajlagos hőkapacitások viszonya
  • Abszolút gőznyomás 
  • Kritikus hőmérséklet

A fentiekből látható, hogy a számítás nem csak összetett, de számos közelítést is tartalmaz. Mi a teendő, ha a szelepünk kialakítás nem egyezik teljesen a szabványban megadottakkal? Hogyan lehetünk benne biztosak, hogy a felhasznált konstansok valóban illenek a mi berendezésünkre? Hogyan kezeljük, ha az általunk használt közeg valamilyen keverék, esetleg nem tiszta gáz/folyadék, melynek pontos anyagjellemzőit esetleg még mi sem ismerjük?

A méretezés során éppen ezért jelentős (gyártónként változó, de mintegy 30%-os) biztonsági tényezőt használnak, mikor egy alkalmazásra átfolyási tényezőt számolnak. A gyártók azonban a saját szelepeikre természetesen nem számítással, hanem közvetlenül, méréssel határozzák meg a Cv értékét.

Az átfolyási tényező mérése

A vonatkozó szabvány 2015-ben frisített 2-3 része éppen ezért a mérési környezet kialakításával foglalkozik. Jól kontrollált körülmények biztosítják, hogy az eredményül kapott Cv/Kv számok a legkülönbözőbb szabályzók összehasonlítását is lehetővé teszik. 

A gyakorlott tervezőmérnökök persze átlátják és tapasztalatból ismerik azokat a faktorokat, amelyek befolyásolhatják a szelep kapacitását, így ha a mérések eredményei nem felelnek meg a várakozásaiknak/elvárásaiknak, tudják, milyen konstrukciós változtatásokkal javíthatják az általuk tervezett elemet.

A fentiekből látszik az is, hogy akár kisebb változtatások, egy másik ülék, egy kicsit átdolgozott szeleptest, vagy a csatlakozók kiosztásának módosítása is komoly hatással lehet az átfolyás mértékére, ezért szükséges azt újra hitelesíteni. Ugyanígy egy szelep viselkedése változhat attól függően, hogy csőhálózatba kötve, vagy szabad térbe lefúvatóként üzemel.

Az átfolyási tényező komplex, de elengedhetetlenül fontos dimenziótlan száma a nyomásszabályzók világának. Partnereink több évtizedes tapasztalata segíthet Önnek eligazodni benne, és az ön alkalmazásának legmegfelelőbb szelepet kiválasztani. Ne habozzon kapcsolatba lépni velünk, ha kérdése van!

A borítókép forrása: https://www.simscale.com/docs/simwiki/cfd-computational-fluid-dynamics/valve-flow-coefficient/

Bármelyik tankönyvet felcsapva megtudhatjuk, hogy a H2 a periódusos rendszer első eleme, ezzel a legkönnyebb atom, a hidrogén gáz kétatomos formában van jelen, izotópjai a prócium, deutérium és a trícium. Számos kapcsolódó témáról írtunk már ezen a honlapon, a nehézgépektől kezdve a buszokon át a szabályozására tervezett elemekig. De mi jellemzi ezt az anyagot a gyakorlati felhasználás szempontjából? Milyen tulajdonságai vannak ennek a zöld átállásban nélkülözhetetlen gáznak? Rövid listánkban erre adunk választ.

A hidrogén gáz molekulái a természetben kétatomos formában jelennek meg.
A kép forrása: https://molecularhydrogeninstitute.org/hydrogen-an-emerging-medical-gas/

Mik a hidrogén gáz főbb tulajdonságai?

  • Kis molekulaméretének köszönhetően a H2 képes diffundálni, még tömör anyagokon keresztül is, ezért a tömítése nagyobb kihívás más gázokénál. Épp ezért a lehetséges szivárgási útvonalak számát a tapasztalt tervezőmérnökök mindig minimalizálni igyekeznek (a lehető legkevesebb csatlakozás beépítésével), illetve nagy hangsúlyt kap a megfelelő anyagválasztás. Utóbbi azért is fontos, mert a diffundáló H2 anyagszerkezettani változásokat idéz elő: az acélok esetében ilyenkor beszélünk “hidrogén ridegedésről”. 
  • Minthogy a hidrogén gáz sűrűsége körül-belül 1/14-e a levegőnek, nagyjából 20 m/s sebességgel száll fel benne, hatszor gyorsabban a földgáznál. Ennek köszönhetően a légtérbe engedett H2 gyorsan eloszlik, illetve oxigénnel gyorsan keveredik, ezért relatíve kicsi a robbanásveszély. Ugyanakkor a zárt terek legmagasabb pontján összegyűlő hidrogén hordoz kockázatokat, amit a terek kialakításakor figyelembe kell venni. 
  • A H2 színtelen, szagtalan gáz, így az emberi szervezet nem érzékeli, ezért detektorokkal és megfelelő szellőzéssel kell csökkenteni egy esetleges szivárgásból fakadó veszélyhelyzet kialakulásának lehetőségét. A földgáziparban bevett gyakorlat, melynek során a gázhoz kellemetlen szagú anyagot kevernek itt nem alkalmazható, mert a jelentős sűrűség-különbség miatt nincs olyan anyag, amivel hatékonyan “megfesthető” lenne a hidrogén. A hidrogén égésekor a láng szintén színtelen, az emberi szem számára láthatatlan, ezért kamerákkal, vagy UV szenzorokkal kell detektálni azt.
  • A hidrogén gáz begyújtásához nagyon kis energia is elegendő, valamint igen széles sávban (4%-tól 75%-os térfogatarányig) képez a levegővel éghető keveréket. Öngyulladási hőmérséklete 585 °C. Ez egyrészt veszélyforrás: H2 alkalmazások esetén a statikus kisüléseket mindenképpen meg kell akadályozni. Ezek a tulajdonságai, bár hordoznak veszélyeket, előnyesek lehetnek belsőégésű motoros alkalmazásoknál, ahogyan az is, hogy az égésterméke egyszerű víz.
  • A hidrogén gáz nem mérgező, nem toxikus, igen valószínűtlen, hogy fulladást okozzon (ami pedig az oxigénen kívül minden más gázról elmondható). Sem a légkört, sem a talajvizet nem szennyezi, ami szintén “plusz pontokat” jelent a zöld átállásban. 

Egy megbízható hidrogén-rendszer megtervezése szaktudást és tapasztalatot igénylő feladat. Partnereinnkel (legyen szó akár szabályozásról, akár méréstechnikáról) együttműködve segíthetünk Önnek egy hatékony, biztonságos és zöld rendszer kiépítésében.

A borítókép forrása: https://hakaimagazine.com/news/how-to-produce-hydrogen-gas-as-cleanly-as-possible-green-hydrogen/

Kihívások, nehézségek és megoldások

Miért kiemelten fontos a hidrogén tömeg- vagy térfogatáramának mérése?

Aligha lehet kérdés, hogy a hidrogén felhasználása során kritikus szerephez jut az áramló mennyiség pontos mérése. 

A fogyasztás pontos ismerete előfeltétele annak, hogy a hidrogént biztonságos, gazdaságos, megbízható és kiszámítható fűtőanyagként használhassuk, akár közlekedésben és szállítmányozásban, akár fűtéstechnikai- vagy villamosenergetikai alkalmazásokban.

Az úgynevezett Zöld Hidrogén, melyet elektrolízissel, megújuló erőforrásokat felhasználva állítanak elő, egyfajta energiatárolási lehetőséget biztosít az egyébként megjósolhatatlan hozamú források (szél- és napenergia) számára. Az ilyen tárolóegységek szintén tartalmaznak áramlásmérőket.

Maguk az elektrolizálók is nagyban támaszkodnak ilyen mérési adatokra. Mivel idővel csökken az elektrolízis hatásfoka, a valós- és elméleti hozam állandó felügyelete nélkül nem készíthető pontos karbantartási terv, és nem minimalizálható a termelés tömegegységre vonatkoztatott átlagos költsége. Fontos követelmény, hogy az áramlásmérő nyomásvesztesége a lehető legalacsonyabb legyen, hiszen az elektrolizáló berendezések általában 35 bar alatti nyomástartományban üzemelnek.

A hidrogén meghajtású járművek töltési folyamata nagyban eltér a hagyományos, folyékony tüzelőanyagot használó belsőégésű motoros járművekétől. A töltés kezdetén a jármű tankjában alacsony (akár 1-2 baros) nyomás uralkodik, míg a töltőrendszer nyomása igen magas (700+ bar). Ahogy a tank megtelik, és a nyomása növekszik, a töltés sebessége csökken. Közben a hidrogén hőmérséklete is folyamatosan változik, különösen a rendszerben található szabályozóelemeknél (fúvókák, szelepek, kompresszorok). Elengedhetetlen tehát a gáz jellemzőinek pontos ismerete, hiszen ha – például – 350 baros nyomás, és 20 °C hőmérséklet mellett a sűrűség számításában 1%-os a hiba, akkor a teljes tömegáramban 0,5% eltérés jelentkezik. Ezért a mérőrendszernek folyamatosan figyelnie – és adott esetben szabályoznia – kell a nyomást és hőmérsékletet (lásd a Joule-Thomson hatásról szóló bejegyzésünket).

A térfogat/tömegáram mérésének lehetőségei

A különböző gázipari alkalmazásokban évtizedek óta fejlesztenek mérőegységeket, azonban ezek nem mind, vagy nem könnyen ültethetőek át hidrogénes rendszerekre (lásd alább). Általános szabály, hogy ilyen alkalmazások esetén ajánlott kerülni a mozgó alkatrészeket, mert ezek kopása és elhasználódása további bizonytalansági faktorokat visz a mérésbe. A legtöbb, hidrogént használó alkalmazásban csak robbanásbiztos (ATEX) kivitelű mérőeszköz fogadható el. Ezen feltételeket számbavéve három fő típus jöhet szóba:

1. Ultrahangos mérőeszközök

Az ultrahangos mérés során először az áramlás irányába, majd azzal ellentétesen bocsátanak ultrahang-hullámokat a mérendő közegbe. Előbbi rövidebb idő alatt érkezik a vevőhöz hiszen a hullám mintegy “utazik” az áramlással. A két mért idő, illetve a közegben jellemző hangsebesség ismeretében kiszámítható az áramlás sebessége. Számos más gáz esetében ipari alkalmazásban elterjedten használják őket, mivel a mérőeszközön a nyomásesés minimális, hiszen gyakorlatilag nem csökkentik a cső áramlási keresztmetszetét. 

Specifikusan hidrogén közegben történő alkalmazásuknak azonban számos nehézsége van:

  • A hidrogén rendkívül jól elnyeli az ultrahang tartományú hullámokat (alacsony sűrűsége miatt), így a jel/zaj arány igen kedvezőtlenül alakul.
  • A hidrogén viszkozitása és sűrűsége alacsony (rendre nagyjából 80%, illetve ⅛-a a metánénak), a hang terjedési sebessége benne viszont igen magas, mintegy háromszorosa a metán közegben mérhetőnek. Mivel ez az érték nagyban függ a nyomástól és hőmérséklettől, komoly pontatlanságot vihet a mérésbe. 
  • Kevés az ipari tapasztalat, illetve ennek következtében a megbízható kalibráció hidrogénipari alkalmazásokra.
  • A hidrogénes rendszerek gyakran igen nagy nyomáson működnek (akár 700+ baron), mely a legtöbb, más közegekre kifejlesztett műszer működési tartománya fölött van. 

Összességében elmondható, hogy még hosszú fejlesztés és kísérletezés szükséges ahhoz, hogy elterjedt, elérhető árú és megbízható ultrahangos hidrogén térfogatáram-mérők álljanak rendelkezésre az iparban. Járműves alkalmazásnál külön nehézséget jelent, hogy kialakult áramlást kell biztosítani a szenzor csőszakaszában, így mind az alvíz, mind a felvíz oldalon hosszú, egyenes szakaszokra van szükség, mely nem mindig kivitelezhető.

Ultrahangos hidrogén térfogatáram mérés
Kép forrása: https://hyfindr.com/en/hydrogen-knowledge/hydrogen-flow-meter

2. Coriolis-elven működő eszközök

A Coriolis mérők direktben tömegáramot mérnek, így nincs szükség a sűrűség ismeretére. Rezgésbe hozott csövek segítségével mérik az átáramló tömeget, melyek merevsége azonban érzékeny lehet a nagyon alacsony hőmérsékletre, vagy nagyon magas nyomásra, utóbbi hangsúlyozottan fordul elő a H2 iparban, de a mérőrendszerek ezt általában a számítás során kompenzálják. Noha maga a mérőeszköz helyigényesebb, működéséhez nem szükséges kialakult áramlás, így beépítési feltételei kedvezőbbek az ultrahangos mérőknél. A nyomásesés azonban a három típus közül itt a legjelentősebb. Ezen felül érzékenyek a környezet rezgéseire, és a csöveket érő mechanikai hatásokra, így járműipari alkalmazásuk korlátozott. Általában jelentős költségvonzatuk van, illetve használat előtt mindenképpen kalibrálni kell hidrogénre, ami megfelelő referencia-mérés hiányában meglehetősen nagy kihívást jelenthet.

Coriolis elven működő tömegárammérés
Kép forrása: https://hyfindr.com/en/hydrogen-knowledge/hydrogen-flow-meter

3. Nyomáskülönbségen alapuló mérés

A harmadik lehetőség a nyomáskülönbségen alapuló mérőeszköz, mely egy kisebb, kontrollált nyomásesést hoz létre az áramlásban, majd ebből a Bernoulli-egyenlet segítségével számol térfogatáramot. Egy kalibrált mérőperemmel leszűkítik az áramlási keresztmetszetet, és a geometria, valamint az anyagjellemzők ismeretében a hidrogén térfogatáram meghatározható. A szükséges nyomásesés általában alacsony, vagy közepes (a fentebbi eszközökhöz viszonyítva). Bizonyos típusoknál előírás a kialakult áramlás, akár 19-40D egyenes csővel a felvíz oldalon, vannak azonban olyan megoldások, melyek ezt ki tudják küszöbölni. Parnerünk, a GM Flow által kifejlesztett kúpos nyomáskülönbség-mérő (DP Cone meter) pontosan ilyen. A skóciai cég, a csapatban összesen 100 éves fejlesztői, tervezői tapasztalattal rendelkezik gázok áramlásának mérésben, és legújabb szabadalommal védett eszközük, a Hy-Cone kifejezetten hidrogénes alkalmazásokhoz készült. A nyomásesés az eszközön kevesebb, mint 1 bar és nem tartalmaz mozgó alkatrészeket, ezért megbízhatóan biztosítja a lehető legnagyobb hozamot az eszközön keresztül. Szívesen ajánljuk az Ön H2 projektjéhez is!

Az Adjusta-Cone, kifejezetten hidrogén térfogatáram mérésére

Kép forrása: https://www.gmflow.co.uk/flow-measurement/

Források:

Miért és hol alkalmazunk fűtött szabályzókat?

A fűtött szabályzók a ’80-as évek elején jelentek meg. Felépítésüket tekintve egy komplett szabályzót és egy központi elhelyezkedésű fűtőelemet tartalmaznak, melyet eleve úgy alakítanak ki, hogy ellensúlyozzon számos, a gőz-állapotú alkalmazásoknál jelentkező nemkívánt jelenséget. Ez az alapvető kialakítás máig érvényes, és sok gyártónál megtalálható, akik árérzékeny, alacsony követelményszintű alkalmazásokhoz kínálnak fűtött szabályzót. 

A fűtött szabályzók alkalmasak folyékony szénhidrogének párologtatására is. Ez különösen hasznosnak bizonyult azokban az időkben, mikor a folyékony minták injektor-szelepei (azaz LSV – flash párologtató) a korabeli kromatográfokon nem bírták a magas nyomásokat, vagy nem voltak olyan megbízhatóak, mint manapság. Ahogy a fűtött szabályzó elemek teret nyertek ezen a piacon, és elkezdték őket szélesebb körben alkalmazni  minták kezelésére, úgy váltak lassan általános megoldássá egyre több gőz- és folyadék alkalmazáshoz, mint például kriogén berendezések, vagy LNG töltés. Erről a térhódításról kapták köznyelvi nevüket: párologtató szabályzók.

Kihívások és desing

Ahogy a berendések egyre komplexebbek lettek, úgy jöttek a problémák a minták párologtatásával: megbízhatatlan mérések, megégett, vagy eltömődő szelepek, mind a hibás használat, vagy rossz beállítások miatt. Mára már tudjuk, hogy az egyszerű kialakítások csak nagyon korlátozottan használhatóak folyékony szénhidrogénekkel. Ez a felismerés vezetett el a flash párologtatók innovatív újragondolásához  (különösen, ami az LNG-s alkalmazásokat illeti), és a kromatográfokon használt LSV-t fejlődéséhez. Itt érdemes megjegyezni, hogy a flash párologtatók egy adott mennyiségű (microliter nagyságrendű) folyadékot fecskendeznek be egy állandó térfogatú, temperált térrészbe. Az így létrejövő azonnali, homogén párolgás roppant pontos mérési eredményekhez vezet, ezt a kialakítást azonban csak igen költségesen lehet megvalósítani. 

A folyamatos áramlást elpárologtató szabályzókkal szemben, noha a működésük éppen ellentétes a fentebb leírtakkal, az elvárás egy idő után ugyanaz a pontosság volt, mint a flash-párologtatónál: ez persze jobbára csak elvárás maradt, és gyakran inkább egyfajta frakcionál-szabályzóként üzemeltek. 

Èppen ezért ez a rövid értekezés azt a célt tűzi ki, hogy a fókuszt újra a folyamatos áramlásos, fűtött szabályzó alapkialakításainak megértésére irányítsuk, és bemutassunk néhány új fejlesztést, folyadék közeg alkalmazásokra. 

Az alábbi illusztráció azt hivatott bemutatni, mi történik egy folyadékmintán, ahogy áthalad egy általánosan elterjedt fűtött szabályozó fűtőelemén. Ez a hatás még hangsúlyosabban van jelen olyan mintáknál, ahol a forrás széles hőmérséklet tartományban megy végbe (tipikusan C1-töl C4+-ig). Ilyen körülmények között bármilyen egyensúlyi kilépő nyomás, áramlás, vagy hőmérséklet elérése és megtartása komoly kihívás. 

A forrás különböző fázisai
A kép forrása: ASaP nl

Gőz közegek

A temperálást egy központi fűtőelem biztosítja a szeleptestben. Úgy helyezik el, hogy a kívánt hőátadás útja a házon felfelé, radiális irányban valósuljon meg. 

A gőz állapotú minta a bemenet felől egy temperált kamra felé áramlik, a fűtőelem körül haladva, ezzel biztosítva, hogy végig a harmatpontja fölött marad, elejét véve a pára- vagy csepp kicsapódásának. Ahogy a vezérlő szelep csökkenti a nyomást, a felső testben Joule-Thompson hatás alakul ki. 

A fűtőelem hőmérsékletét folyamatosan szabályozni kell, hogy ezt a hatást ellensúlyozza, ugyanakkor a teljes szabályzóban harmatpont fölött tartsa a mintát, normál áramlási feltételek mellett. A szükséges hőmennyiséget befolyásolják az adott alkalmazásra jellemző nyomásviszonyok, az áramlási- és környezeti körülmények.

A minta a membrán körül áramlik a kilépő csatlakozás felé, végig a fűtött kamra közelében, a lehűlést elkerülendő. Bizonyos idő után beáll egy általános egyensúlyi állapot, melyet üzembe helyezés után optimalizálhatunk. 

Egyes alkalmazások esetén, ha a nyomáskülönbség jelentős, a nyomáscsökkentés során jelentkező J/T hatás olyan jelentős lehet, hogy egyszerűen nem lehet eléggé felfűteni a szabályzót, hogy a jégképződést elkerüljük. Ez a minta kondenzációjához vezet, a kilépési oldalon folyadék fázis jelenhet meg, és mechanikus hibákat, gázszivárgást okozhat. Ezek a problémák egy fűtőelemmel nem kezelhetőek, ilyenkor lehet szükség flash-párologtatókra, többlépcsős nyomáscsökkentésre, vagy kettős-fűtésű szabályzóra, adott térfogatáram mellett.

Egyszeres (balra) és kettős (jobbra) fűtésű fűtött szabályzó.
Egyszeres (balra) és kettős (jobbra) fűtésű nyomászszabályozó. Forrás: Pressure Tech UK

Folyadék közegek

A folyadékokat az alkalmazás során forráspont alatt és a hőforrástól távol kell tartani, mely más megközelítést tesz szükségessé.

A következő kialakítás poliamidból készült, belépő csonkja sokkal kevésbé vezeti a hőt (0,12 W/mk) mint például a SS316 (16,3 W/mk).

Ez a poliamid szigetelés védi a folyadékmintát a belépéstől az elpárologtatón át egészen a sugár legkisebb keresztmetszetéig (vena contracta) ahol a legnagyobb a nyomásesés és az áramlás a legfrakcionáltabb. Megfelelő szigetelést biztosítva elérhető, hogy a minta ezt a pontot szuperkritikus állapotban érje el, így fázisátmenet folyadék és gáz között pillantszerű lesz, nem jelennek meg vegyes fázisok. 

A furat nagyságának, és a Cv érték helyes megválasztásával a szabályzó testre szabható az egyes alkalmazásokra, illetve készleteink segítségével könnyen átszerelhető.

A kilépés felé eltolt fűtés a hőteljesítményének jelentős részét a nyomáscsökkentés zónája után adja le. A tömör spirál hüvelybe helyezett fűtőpatron nagy felülete biztosítja a hatékony hőátadást a kiáramló minta felé Ezzel a spirális betétel a az elektromos teljesítménysűrűség 11,4%-kal, 4,93 W/cm2-re emelkedik egy 100W-os fűtésnél.

Fűtött szabályzó metszeti ábrája
A kép forrása: Pressure Tech UK

Tipikus alkalmazási környezetük a finomítók, NGL, cseppfolyós propán, bután és etilén művek, illetve a kriogenika.

Összegzés

Az analitikai berendezések mindig komoly befektetést jelentenek, de csak akkor szolgáltatnak valid eredményeket, ha reprezentatív mintákat kapnak mind a kalibráció, mind a normál üzemmenet során. Ha fűtött szabályzókat folyadék közegre alkalmazunk, létfontosságú felmérni, megjelenhet-e frakcionáció, párolgás vagy kondenzáció a mintában, és ezen hibák összessége hogy hathat az eredményekre. 

Ilyen esetekben a legdrágább mérőrendszert is túszul ejtheti egy egyszerű fűtött szabályzó. A területen felgyülemlett tudás, párosítva a korszerű megmunkálási technológiákkal lehetővé teszi azokat a kialakításokat, amik sokkal alkalmasabbak folyékony szénhidrogén-alkalmazások kiszolgálására, miközben a termék csomagolás és integrálás szempontjából mit sem változott.

A cikk eredeti verziója: https://www.pressure-tech.com/files/39/Pressure%20Tech_Vaporising%20Regulators%20for%20Hydrocarbon%20Service.pdf
A borítókép forrása: ASaP NL

Lemar Wright videósorozata a nyomáshatárolókról: 9. rész

A Pressure Tech mérnöke mutatja be a decaying inlet ("lecsengő nyomás") jelenséget.

A Pressure Tech mérnöke, Lemar Wright (angol nyelvű) videósorozatban magyarázza el a nyomásszabályzók működését, tisztán és közérthetően, az egyszerű megértésért:

A sorozat során számos, a nyomáshatárolókkal kapcsolatos fogalommal ismerkedhettünk meg. A legfontosabb dimenziók meghatározásán túl láttunk már példát arra, hogyan változhat nemkívánt módon az alvíz oldali nyomás, ha az üzemeltetés során pl. szennyező kerül a szelepbe. Más esetben is tapasztalhatjuk azonban a kilépő nyomás növekedését, melyet megfelelő kiválasztással ellensúlyozhatunk. Esett már szó a kiegyensúlyozott szelepekről, most következzen egy, a gyakorlatban sűrűn előforduló alkalmazási példa:

Mi a „decaying inlet” (lecsengő nyomás) effektus?

Mi a „decaying inlet” (lecsengő nyomás) effektus?

Amennyiben az Ön alkalmazásában fontos, hogy a kilépési nyomás állandó értéket tartson, fontos a csökkenő belépés hatásának megértés, és a megoldás lehetőségeinek ismerete. Ha a nyomásszabályzót olyan forrás után építjük be, melynek nyomása folyamatosan csökken – mint például egy gázpalack – akkor tapasztalhatjuk, hogy a kilépési nyomás a felvíz oldali nyomás csökkenésével arányosan nő.

A szabályzót egy adott belépő-kilépő nyomáspárra állítjuk be, ekkor a rá ható erők egyensúlyban vannak. Ez az egyensúly borul fel a felvíz oldali nyomás csökkenésével. Az erőegyensúly helyreállásához ekkor a kilépési nyomás növekedésére van szükség, hogy a szelep újra egyensúlyba kerüljön.

Ezt a „libikóka-hatást” több megoldással csökkenthetjük, mint például a kiegyensúlyozott szelep használata, vagy egy kétlépcsős nyomáscsökkentés bevezetése.

Ha az Ön rendszerében is problémát okoz a „decaying inlet” hatás, keressen minket megoldási javaslatokért!

Lemar Wright videósorozata a nyomáshatárolókról: 8. rész

A creep (kúszás) elkerülése nem csak a megfelelő méretezésen múlik: az üzemeltetési körülmények is fontosak.

A Pressure Tech mérnöke, Lemar Wright (angol nyelvű) videósorozatban magyarázza el a nyomásszabályzók működését, tisztán és közérthetően, az egyszerű megértésért:

Még egy megfelelően méretezett és kiválasztott nyomásszabályzó életciklusa alatt is felléphetnek bizonyos problémák. Egy ilyen elem első és legfontosabb célja, hogy stabil kilépő (avagy alvíz oldali) nyomást tartson, egyrészt az üzembiztonság, másrészt az oda beépített komponensek védelmének érdekében.

Az alábbiakban egy jellegzetes, üzemeltetésből adódó hibajelenséget mutatunk be, mely éppen ezt a kulcsfontosságú funkciót érinti.

Mit értünk „kúszás” (creep) alatt?

Mit értünk „kúszás” (creep) alatt?

Egy másik, az iparágban gyakran megjelenő kifejezés a „creep”, vagyis kúszás, melynek megértése szintén elengedhetetlen. Jelentése, hogy a kilépő oldali nyomás lassan növekszik a szabályozó zárt állásában. Ez valamilyen belső szivárgásra utal, és a nyomásszabályzó azonnali javítását teszi szükségessé.

Több faktor is okozhat efféle kúszást, de tapasztalatunk szerint 100 esetből 99-ben az ok valamilyen, felvíz oldalról bejutó szennyeződés. Éppen ezért számos szabályzónkat már eleve beépített szűrővel forgalmazzuk, ha ennek hiányában mindenképpen ajánlott egy külső szűrő beépítése. A szennyezők miatt megsérülhet a szelepülék, vagy a fő szeleptest, ami lehetetlenné teszi a sikeres és teljes zárást. Ha nem teszünk ellene, a kilépési nyomás be fog állni a belépő oldali nyomás szintjére.

A nyomásszabályzó alvíz-oldalára minden esetben ajánlott egy biztonsági nyomáshatároló beépítése. A nyomásszabályzókat tilos elzárószelepként beépíteni!

Amennyiben már a kiválasztás során megosztja velünk a rendszer architektúrájára, a felhasznált közegre, leválasztókra, szűrőkre vonatkozó információkat, segíthetünk elkerülni, hogy olyan üzemi körülmények alakuljanak ki, melyek növelik a creep bekövetkezésének kockázatát.

Ha Ön ilyen jelenséget tapasztal a rendszerében, vagy biztosra akar menni ennek kiküszöbölésében, segítünk Önnek megoldani!

Lemar Wright videósorozata a nyomáshatárolókról: 7. rész

A Pressure Tech mérnöke, Lemar Wright (angol nyelvű) videósorozatban magyarázza el a nyomásszabályzók működését, tisztán és közérthetően, az egyszerű megértésért.

Az eddigi részekben átteknitettük a kiválasztás és méretezés lépéseit, illetve hogy miért fontos elkerülni a fojtott áramlást. Van azonban még egy fontos effektus, melyet számításba kell vennünk.

Mi az a Joule-Thomson hatás?

Mi az a Joule-Thomson hatás?

Ha egy jégtömbbé fagyott nyomásszabályzóval találkozunk, első kézből láthatjuk a Joule-Thomson hatás fizikai megjelenését. Ez az effektus – vagy más néven Joule-Kelvin hatás – azt a törvényszerűséget írja le, hogy egy szűkületen, esetükben szelepen, átáramló gáz a környezetével való hőcsere híján – azaz hőszigetelt térben – hőmérséklete hogyan változik meg. Minthogy a nyomáshatárolókban a gáz éppen ilyen szűk keresztmetszeten, magán a szelepen áramlik át, ez a hatás igen erőteljesen érvényesül.

Ahogy a gáz ezt követően kitágul, a hőmérséklete vagy növekszik, vagy csökken, a kiindulási hőmérséklettől és nyomástól, valamint a gáz anyagjellemzőjének függvényében. A legtöbb gáz tágulása során lehűl, kivéve a hidrogént és héliumot, melyek éppen hogy felmelegednek. Ugyanez a jelenség játszódik le, mikor például egy dezodor kifújásakor annak doboza egyre hűsebb lesz a kezünkben.

Ahhoz, hogy egy, a berendezésünkön áthaladó közeg hőmérsékletét szabályozni tudjuk, és hogy stabil munkapontot tarthassunk, a Joule-Thomson hatás megértése elengedhetetlen. A nyomás- és hőmérsékletviszonyok beállításával, valamint fűtött szabályozóink alkalmazásával elérhető, hogy a szelepet elhagyó gáz nyomása és hőmérséklete a megengedett értékek között maradjon. Hogy meghatározzuk, hogy a szabályzónak milyen extra alkotóelemekkel kell ehhez rendelkeznie, mindenképpen számításba kell vennünk a Joule-Thomson effektust.

A kép egy, a CO2 expanziója során lehűlt LF540 szabályzót ábrázol. A lehűlés a Joule-Thomson hatás következménye.

A képen egy LF540-es látható, amit CO2 nyomásának csökkentésére használnak. Ahogy a gáz tágul, a szabályzó olyan mértékben hűl le, hogy a környező levegő páratartalma a felületén megfagy. Noha ez a jelenség a felhasználó számára aggasztó lehet, ebben az esetben a szabályzó abszolút hibamentes működött, 500 000 szabályzási ciklust valósítva meg három hét alatt.

Ha segítségre van szüksége a Joule-Thomson hatással kapcsolatban, és hogy hogyan befolyásolja ez az Ön szabályzójának működését, keressen minket bizalommal!

Lemar Wright videósorozata a nyomáshatárolókról: 6. rész

Fojtott áramlás egy szelepben: CFD szimuláció segítségével modellezve és megjelenítve.

A Pressure Tech mérnöke, Lemar Wright (angol nyelvű) videósorozatban magyarázza el a nyomásszabályzók működését, tisztán és közérthetően, az egyszerű megértésért.

Bár volt már szó a méretezésről, Lemar ezalkalommal egy újabb szempontot hoz be, melyet mindenképp ajánlott figyelembe venni, különösen nagy nyomáslépcső esetén.

A sorozat hatodik részében a fojtott áramlás témakörét mutatja be, kifejezetten a nyomásszabályzók méretezésének szempontjából. „Chocked flow”-nak azt nevezzük, mikor a közeg az expanzió, vagy áramlás során a legszűkebb keresztmetszetben eléri a lokális hangsebességet. Noha a jelenség olykor kifejezetten kívánatos, vagy a hasznunkra fordítható, egy szelep esetébenm méretezési problémára utal, és nem jelent sok jót az üzembiztonság tekintetében.

Mi az a fojtott áramlás, és hogyan kerülhető el?

Mi az a fojtott áramlás, és hogyan kerülhető el?

Ha nyomásszabályzót választunk, vagy méretezünk, mindenképpen el kell kerülnünk, hogy fojtott áramlás alakuljon ki benne. Ekkor ugyanis a szabályzó teljesen nyitott állapotban van, és elveszítjük a további kontrollt az áramlási paraméterek felett hiszen ha a szabályzó fojtott üzemállapotban van, a nyomáskülönbség további növekedése nem eredményez magasabb térfogatáramot. Ezért is nagyon fontos, hogy a méretezésnél pontosan ismerjük mind a felvíz-, mind az alvíz-oldali jellemzőket, és azok potenciális változásait.

Ha biztos akar benne lenni, hogy a méretezési, kiválasztási folyamat helyes eredményre vezet, ne habozzon kapcsolatba lépni velünk!

A kép forrása: Computational study of compressible flow through choke valve

Lemar Wright videósorozata a nyomáshatárolókról: 5. rész

A Pressure Tech megoldásainak bemutatása a droop elkerülésére.

A Pressure Tech mérnöke, Lemar Wright (angol nyelvű) videósorozatban magyarázza el a nyomásszabályzók működését, tisztán és közérthetően, az egyszerű megértésért.

A sorozat korábbi részeiben megismerhettük a nyomáshatárolókkal kapcsolatos alapfogalmakat, segítséget kaptunk a megfelelő szelep kiválasztásához és méretezéshez.

A sorozat ötödik részében az alvíz oldali nyomás nemkívánt változásával, azaz angol szakszóval a „droop”-pal foglalkozik, és felsorakozatt néhány lehetséges megoldást, hogyan tartható a kívánt nyomásérték változó térfogatáramok esetén is.

Mi a „droop” jelenség egy nyomásszabályzó esetében?

Mi a „droop” jelenség egy nyomásszabályzó esetében?

A „droop” elterjedten használt fogalom az iparban, de mit is jelent pontosan, és mi a jelenség magyarázata?

Droopnak azt szokás nevezni, mikor a kilépő oldali nyomás a térfogatáram növekedésével csökken. A legjelentősebb hatással a nyomászszabályozó terhelési mechanizmusa van rá. Mint tudjuk, a terhelő erő a rugó előfeszítésével változtatható, azonban az érzékelőelem és a fő szelep mozgásával a rugó hossza is változik, és így a rugóerő is ingadozik.

Csökkentésére ezért alkalmazhatunk például pneumatikus szabályzót. Itt egy rögzített mennyiségű levegő-térfogat biztosítja az állandó terhelő-erőt, a belső alkatrészek mozgásától függetlenül. Egy másik lehetséges megoldás egy érzékelő-furat kialakítása, mellyel az alvíz oldalon kialakult nyomást az érzékelő-elemhez vezethetjük vissza. Ez gyorsabb választ eredményez, és különösen magas térfogatáramok esetén hasznos.

Ha többet szeretne megtudni a droop jelenségről, és arról, hogy milyen egyedi megoldásokkal tudunk segíteni a csökkentésében, kiküszöbölésében, lépjen kapcsolatba velünk!

Lemar Wright videósorozata a nyomáshatárolókról: 4. rész

Pressure Tech termékek partnercégünk profspektusából.

A Pressure Tech mérnöke, Lemar Wright (angol nyelvű) videósorozatban magyarázza el a nyomásszabályzók működését, tisztán és közérthetően, az egyszerű megértésért. Az eddigi részekben bemutattuk az alapfogalmakat, az érzékelőelemeket és a szeleptest kiegyensúlyozásának fontosságát. Ennek a résznek a témája a méretezés, és hogy mi alapján válasszunk nyomáshatárolót.

Nyomásszabályozó: méretezés és kiválasztás

  • A nyomásszabályzók méretezéséhez az áramlási tényezőt (Cv, vagy Kv értéket) használjuk. Ez lényegében az adott szabályzó áramlási kapacitását jellemző érték.
  • Négy fő kiindulási adatot kell szem előtt tartanunk:
  1. Belépő, vagy felvíz oldali nyomás
  2. Kilépő, vagy alvíz oldali nyomás
  3. A szabályozni kívánt közeg
  4. Térfogatáram
  • Ezen értékek ismeretében felírhatunk egy egyenletet a szelep Cv értékére. Ezzel kiszámítható a szükséges átömlési- vagy szelepülék méret. Fontos, hogy ezen értékek teljes tartományát ismerjük, hiszen csak így biztosítható, hogy a választott szabályzó megfelel az alkalmazásunkhoz.
  • Az elméletileg szükséges Cv értéket összevetjük a szóba jövő szabályzók áramlási görbéivel. Íme egy példa egy ilyen görbére, és annak három tartományára:
    • Az első a kezdeti nyitási fázis, mely a kapacitás 0 és 10% százaléka között jellemzi a szabályzót. A jelenség hátterében az áll, hogy a rendszerünk statikus állapotból dinamikusba vált.
    • A második tartományt relatíve stabil kilépő nyomás jellemzi, a térfogatáram jelentős növekedése mellett, nagyjából a kapacitás 10 és 80%-os kihasználtsága között. Célunk, hogy a szabályzó ebben a tartományban működjön.
    • Végül elérjük a fojtott áramlás tartományát, 80 és 100%-os kapacitás között.
  • Célunk, hogy olyan szabályzót segítsünk választani, mely az alkalmazás változatos körülményei között a leghatékonyabban tölti be a kívánt funkciót. Ebben segítenek minket a különböző terhelési mechanizmusok, kiegyensúlyozás, anyagválasztás, érzékelő elemek, melyekkel termékeinket az Ön egyedi elvárásaihoz alakíthatjuk.
Példa egy diagramra, mely a méretezést segíti elő.
Diagram forrása: Pressure Tech

Ha többet szeretne megtudni a szabályozók méretezéséről, kiválasztásáról, és hogy milyen egyedi megoldásokkal segíthetünk Önnek, ne habozzon felvenni velünk a kapcsolatot!

Kép forrása: Pressure Tech